博客
关于我
TensorFlow学习--SAME与VALID区别
阅读量:142 次
发布时间:2019-02-27

本文共 750 字,大约阅读时间需要 2 分钟。

CNN中的卷积层和池化层的Padding方式

在CNN(卷积神经网络)架构中,卷积层和池化层的Padding方式对模型的性能和效果有着重要影响。TensorFlow中的tf.nn.conv2d()tf.nn.max_pool()函数提供了两种主要的Padding选择:'VALID''SAME'。以下是这两种方式的详细说明。


1. Padding方式:VALID

VALID模式下,没有填充操作(Padding为0)。这种方式会导致输出的尺寸相对于输入的尺寸有所缩小。具体来说,当使用3x3的卷积核对7x7的图像进行卷积操作时,若步长(Stride)为1,输出的尺寸将变为5x5。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:5x5

说明:

  • 没有填充意味着边缘的像素会被舍去。
  • 这种方式适用于控制模型的复杂度,尤其是在需要减少计算量的情况下。
  • 输出尺寸的减少会使得模型的参数数量相应减少,从而影响性能。

2. Padding方式:SAME

SAME模式下,会对输入图像进行边界填充,填充值为0。这种方式能够确保输出的尺寸与输入的尺寸一致,不会丢失边缘元素。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:7x7

说明:

  • 填充边界使得卷积核能够完整地覆盖输入图像的每一个像素。
  • 这种方式保留了所有原始图像的像素信息,不会引入额外的边缘丢失。
  • 输出尺寸与输入尺寸一致,适合需要保持图像尺寸不变的情况。

3. Padding方式的综合比较

  • `VALID``:输出尺寸减小,适用于控制模型复杂度。
  • SAME:输出尺寸与输入一致,适用于需要保留图像边缘信息的情况。

选择哪种Padding方式取决于具体的应用场景和模型需求。

转载地址:http://swid.baihongyu.com/

你可能感兴趣的文章
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
Nginx + uWSGI + Flask + Vhost
查看>>
Nginx Location配置总结
查看>>
Nginx 反向代理解决跨域问题
查看>>
nginx 后端获取真实ip
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
nginx 常用配置记录
查看>>
Nginx 我们必须知道的那些事
查看>>
nginx 配置~~~本身就是一个静态资源的服务器
查看>>
Nginx的是什么?干什么用的?
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NI笔试——大数加法
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
查看>>