博客
关于我
TensorFlow学习--SAME与VALID区别
阅读量:142 次
发布时间:2019-02-27

本文共 750 字,大约阅读时间需要 2 分钟。

CNN中的卷积层和池化层的Padding方式

在CNN(卷积神经网络)架构中,卷积层和池化层的Padding方式对模型的性能和效果有着重要影响。TensorFlow中的tf.nn.conv2d()tf.nn.max_pool()函数提供了两种主要的Padding选择:'VALID''SAME'。以下是这两种方式的详细说明。


1. Padding方式:VALID

VALID模式下,没有填充操作(Padding为0)。这种方式会导致输出的尺寸相对于输入的尺寸有所缩小。具体来说,当使用3x3的卷积核对7x7的图像进行卷积操作时,若步长(Stride)为1,输出的尺寸将变为5x5。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:5x5

说明:

  • 没有填充意味着边缘的像素会被舍去。
  • 这种方式适用于控制模型的复杂度,尤其是在需要减少计算量的情况下。
  • 输出尺寸的减少会使得模型的参数数量相应减少,从而影响性能。

2. Padding方式:SAME

SAME模式下,会对输入图像进行边界填充,填充值为0。这种方式能够确保输出的尺寸与输入的尺寸一致,不会丢失边缘元素。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:7x7

说明:

  • 填充边界使得卷积核能够完整地覆盖输入图像的每一个像素。
  • 这种方式保留了所有原始图像的像素信息,不会引入额外的边缘丢失。
  • 输出尺寸与输入尺寸一致,适合需要保持图像尺寸不变的情况。

3. Padding方式的综合比较

  • `VALID``:输出尺寸减小,适用于控制模型复杂度。
  • SAME:输出尺寸与输入一致,适用于需要保留图像边缘信息的情况。

选择哪种Padding方式取决于具体的应用场景和模型需求。

转载地址:http://swid.baihongyu.com/

你可能感兴趣的文章
mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
查看>>
mysql 里对root及普通用户赋权及更改密码的一些命令
查看>>
Mysql 重置自增列的开始序号
查看>>
MySQL 高可用性之keepalived+mysql双主
查看>>
mysql5.6.21重置数据库的root密码
查看>>
MySQL5.6忘记root密码(win平台)
查看>>
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
MySQL5.7.18主从复制搭建(一主一从)
查看>>
MySQL5.7.19-win64安装启动
查看>>
mysql5.7性能调优my.ini
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>
mysql5.7的安装和Navicat的安装
查看>>
mysql5.7示例数据库_Linux MySQL5.7多实例数据库配置
查看>>
MySQL8.0.29启动报错Different lower_case_table_names settings for server (‘0‘) and data dictionary (‘1‘)
查看>>
MySQL8修改密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
查看>>
MySQL8找不到my.ini配置文件以及报sql_mode=only_full_group_by解决方案
查看>>
mysql8的安装与卸载
查看>>
mysqlbinlog报错unknown variable ‘default-character-set=utf8mb4‘
查看>>
mysqldump 导出中文乱码
查看>>