博客
关于我
TensorFlow学习--SAME与VALID区别
阅读量:142 次
发布时间:2019-02-27

本文共 750 字,大约阅读时间需要 2 分钟。

CNN中的卷积层和池化层的Padding方式

在CNN(卷积神经网络)架构中,卷积层和池化层的Padding方式对模型的性能和效果有着重要影响。TensorFlow中的tf.nn.conv2d()tf.nn.max_pool()函数提供了两种主要的Padding选择:'VALID''SAME'。以下是这两种方式的详细说明。


1. Padding方式:VALID

VALID模式下,没有填充操作(Padding为0)。这种方式会导致输出的尺寸相对于输入的尺寸有所缩小。具体来说,当使用3x3的卷积核对7x7的图像进行卷积操作时,若步长(Stride)为1,输出的尺寸将变为5x5。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:5x5

说明:

  • 没有填充意味着边缘的像素会被舍去。
  • 这种方式适用于控制模型的复杂度,尤其是在需要减少计算量的情况下。
  • 输出尺寸的减少会使得模型的参数数量相应减少,从而影响性能。

2. Padding方式:SAME

SAME模式下,会对输入图像进行边界填充,填充值为0。这种方式能够确保输出的尺寸与输入的尺寸一致,不会丢失边缘元素。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:7x7

说明:

  • 填充边界使得卷积核能够完整地覆盖输入图像的每一个像素。
  • 这种方式保留了所有原始图像的像素信息,不会引入额外的边缘丢失。
  • 输出尺寸与输入尺寸一致,适合需要保持图像尺寸不变的情况。

3. Padding方式的综合比较

  • `VALID``:输出尺寸减小,适用于控制模型复杂度。
  • SAME:输出尺寸与输入一致,适用于需要保留图像边缘信息的情况。

选择哪种Padding方式取决于具体的应用场景和模型需求。

转载地址:http://swid.baihongyu.com/

你可能感兴趣的文章
navicat创建连接 2002-can‘t connect to server on localhost(10061)且mysql服务已启动问题
查看>>
Navicat可视化界面导入SQL文件生成数据库表
查看>>
Navicat向sqlserver中插入数据时提示:当 IDENTITY_INSERT 设置为 OFF 时,不能向表中的标识列插入显式值
查看>>
Navicat因导入的sql文件中时间数据类型有参数而报错的原因(例:datetime(3))
查看>>
Navicat如何连接MySQL
查看>>
navicat导入.sql文件出错2006- MySQLserver has gone away
查看>>
Navicat工具Oracle数据库复制 or 备用、恢复功能(评论都在谈论需要教)
查看>>
navicat怎么导出和导入数据表
查看>>
Navicat报错:1045-Access denied for user root@localhost(using passwordYES)
查看>>
Navicat控制mysql用户权限
查看>>
Navicat通过存储过程批量插入mysql数据
查看>>
Navicat(数据库可视化操作软件)安装、配置、测试
查看>>
NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
查看>>
NBear简介与使用图解
查看>>
nc命令详解
查看>>
ndk特定版本下载
查看>>
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>