博客
关于我
TensorFlow学习--SAME与VALID区别
阅读量:142 次
发布时间:2019-02-27

本文共 750 字,大约阅读时间需要 2 分钟。

CNN中的卷积层和池化层的Padding方式

在CNN(卷积神经网络)架构中,卷积层和池化层的Padding方式对模型的性能和效果有着重要影响。TensorFlow中的tf.nn.conv2d()tf.nn.max_pool()函数提供了两种主要的Padding选择:'VALID''SAME'。以下是这两种方式的详细说明。


1. Padding方式:VALID

VALID模式下,没有填充操作(Padding为0)。这种方式会导致输出的尺寸相对于输入的尺寸有所缩小。具体来说,当使用3x3的卷积核对7x7的图像进行卷积操作时,若步长(Stride)为1,输出的尺寸将变为5x5。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:5x5

说明:

  • 没有填充意味着边缘的像素会被舍去。
  • 这种方式适用于控制模型的复杂度,尤其是在需要减少计算量的情况下。
  • 输出尺寸的减少会使得模型的参数数量相应减少,从而影响性能。

2. Padding方式:SAME

SAME模式下,会对输入图像进行边界填充,填充值为0。这种方式能够确保输出的尺寸与输入的尺寸一致,不会丢失边缘元素。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:7x7

说明:

  • 填充边界使得卷积核能够完整地覆盖输入图像的每一个像素。
  • 这种方式保留了所有原始图像的像素信息,不会引入额外的边缘丢失。
  • 输出尺寸与输入尺寸一致,适合需要保持图像尺寸不变的情况。

3. Padding方式的综合比较

  • `VALID``:输出尺寸减小,适用于控制模型复杂度。
  • SAME:输出尺寸与输入一致,适用于需要保留图像边缘信息的情况。

选择哪种Padding方式取决于具体的应用场景和模型需求。

转载地址:http://swid.baihongyu.com/

你可能感兴趣的文章
mysql查询总成绩的前3名学生信息
查看>>
mysql查询慢排查
查看>>
MySQL查询报错ERROR:No query specified
查看>>
mysql查询数据库储存数据的占用容量大小
查看>>
MySQL查询数据库所有表名及其注释
查看>>
MySQL查询数据表中数据记录(包括多表查询)
查看>>
MySQL查询结果排序
查看>>
MYSQL查询语句优化
查看>>
mysql查询语句能否让一个字段不显示出来_天天写order by,你知道Mysql底层执行原理吗?
查看>>
MySQL查询语句:揭秘专家秘籍,让你秒变数据库达人!
查看>>
mysql查询超时对PHP执行的影响
查看>>
mysql查询输出到excel文件_如何保存mysql查询输出到excel或.txt文件?
查看>>
mysql查询过程
查看>>
MySQL模拟Oracle序列sequence
查看>>
Mysql模糊查询like效率,以及更高效的写法
查看>>
MySQL死锁套路:一次诡异的批量插入死锁问题分析
查看>>
Mysql死锁问题Deadlock found when trying to get lock;try restarting transaction
查看>>
mysql每个数据库的最大连接数_MySQL数据库最大连接数
查看>>
Mysql流程控制结构,if函数、case结构、if结构、循环结构
查看>>
mysql添加外网访问权限
查看>>