博客
关于我
TensorFlow学习--SAME与VALID区别
阅读量:142 次
发布时间:2019-02-27

本文共 750 字,大约阅读时间需要 2 分钟。

CNN中的卷积层和池化层的Padding方式

在CNN(卷积神经网络)架构中,卷积层和池化层的Padding方式对模型的性能和效果有着重要影响。TensorFlow中的tf.nn.conv2d()tf.nn.max_pool()函数提供了两种主要的Padding选择:'VALID''SAME'。以下是这两种方式的详细说明。


1. Padding方式:VALID

VALID模式下,没有填充操作(Padding为0)。这种方式会导致输出的尺寸相对于输入的尺寸有所缩小。具体来说,当使用3x3的卷积核对7x7的图像进行卷积操作时,若步长(Stride)为1,输出的尺寸将变为5x5。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:5x5

说明:

  • 没有填充意味着边缘的像素会被舍去。
  • 这种方式适用于控制模型的复杂度,尤其是在需要减少计算量的情况下。
  • 输出尺寸的减少会使得模型的参数数量相应减少,从而影响性能。

2. Padding方式:SAME

SAME模式下,会对输入图像进行边界填充,填充值为0。这种方式能够确保输出的尺寸与输入的尺寸一致,不会丢失边缘元素。

示意图:

输入图像尺寸:7x7卷积核尺寸:3x3步长(Stride):1输出图像尺寸:7x7

说明:

  • 填充边界使得卷积核能够完整地覆盖输入图像的每一个像素。
  • 这种方式保留了所有原始图像的像素信息,不会引入额外的边缘丢失。
  • 输出尺寸与输入尺寸一致,适合需要保持图像尺寸不变的情况。

3. Padding方式的综合比较

  • `VALID``:输出尺寸减小,适用于控制模型复杂度。
  • SAME:输出尺寸与输入一致,适用于需要保留图像边缘信息的情况。

选择哪种Padding方式取决于具体的应用场景和模型需求。

转载地址:http://swid.baihongyu.com/

你可能感兴趣的文章
MySQL性能测试及调优中的死锁处理方法
查看>>
mysql性能测试工具选择 mysql软件测试
查看>>
mysql恢复root密码
查看>>
Mysql悲观锁
查看>>
MySQL慢查询-开启慢查询
查看>>
MySQL慢查询分析和性能优化的方法和技巧
查看>>
MySQL慢查询日志总结
查看>>
Mysql慢查询日志,查询截取分析
查看>>
MySQL慢查询问题排查
查看>>
mysql截取sql语句
查看>>
mysql截取身份证号前几位_EXCEL中怎样截取身份证号前六位数字
查看>>
mysql手工注入
查看>>
MySQL执行SQL文件出现【Unknown collation ‘utf8mb4_0900_ai_ci‘】的解决方案
查看>>
Mysql执行update by id的过程
查看>>
mysql执行计划
查看>>
MySQL执行计划 EXPLAIN参数
查看>>
MySQL执行计划【explain】,看这一篇就够啦!
查看>>
Mysql执行计划字段解释
查看>>
mysql执行计划怎么看
查看>>
MySQL执行计划解读
查看>>